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The effect of helicity on the Lagrangian velocity covariance UL( t )  in isotropic, normally 
distributed turbulence is examined by computer simulation and by a renormalized 
perturbation expansion for UL( t ) .  The first term of the latter represents Corrsin’s 
(1959) conjecture (extrapolated to all t ) ,  which relates U L ( t )  to the Eulerian covariance 
and the distribution G(x, t )  of fluid-element displacement. Truncation of the expansion 
a t  the first term yields the direct-interaction approximation for G ( x ,  t ) .  The expansion 
suggests that with or without helicity Corrsin’s conjecture is valid as t -+ 00 and that 
in either case UL( t )  behaves asymptotically like t-@+Q) if the spectrum of the Eulerian 
field varies like 7cr+2 at small wavenumbers. Corrsin’s conjecture breaks down at  small 
and moderate t if there is strong helicity while remaining accurate at  all t in the 
mirror-symmetric case. Computer simulations for a frozen Eulerian field with spectrum 
confined to a thin spherical shell in k space indicate that strong helicity induces an 
increase in the Lagrangian correlation time by a factor of approximately three. 
Direct-interaction equations are constructed for the Lagrangian space-time covariance 
and the resulting prediction for UL(t)  is compared with the simulations. The effect of 
helicity is well represent,ed quantitatively by the direct-interaction equations for small 
and moderate t but not for large t .  These frozen-field results imply good quantitative 
accuracy at all t in time-varying turbulence whose Eulerian correlation time is of the 
order of the eddy-circulation time. In turbulence with weak helicity, the direct- 
interaction equations imply that the Lagrangian correlation of vorticity with initial 
velocity is more persistent than UL(t),  by a substantial factor. 

1. Introduction 
Some recent computer experiments on diffusion in homogeneous turbulence 

(Kraichnan 1976) have given the unexpected result that helicity in the turbulence 
enhances the diffusion of fluid elements. In  the present paper, this phenomenon is 
studied analytically, and the computer experiments are extended to longer diffusion 
times. Our investigation is confined to statistically stationary, isotropic turbulence, 
for analytical simplicity, but the results carry over to the more general homogeneous 
case. We use the word isotropic here to imply rotational invariance and distinguish 
between reflexionally invariant and helical statistics within the isotropic category. 

Let ui(x, t )  denote the Eulerian velocity field and consider the Lagrangian velocity 

V i ( t )  = ui(Y(t)t t )  (1.1) 

of the fluid element whose trajectory 
t 

0 
yi( t )  = S vi(s)ds (1.2) 
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passes through x = 0, t = 0.  The Lagrangian velocity covariance and the diffusivity 
coefficient for fluid elements are given by 

UL(t)  = ( v i ( t )  Vi(0)))  
i t  

~ ( t )  = - 3 I0 UL(s)da.  (1.3) 

An enhanced value of the steady-state diffusivity K(CO) in helical turbulence implies 
that the Lagrangian velocity correlation is more persistent. 

The effect of helicity on UL(t )  can be straightforwardly displayed by repeatedly 
differentiating (1 .1)  at t = 0 and evaluating the Eulerian moments thus generated in 
order to determine the coefficients c, in the expansion 

tn 
UL(t)  = c c,- 

n=O n! '  

The evaluation is simplest when the Eulerian field is frozen in time [u i (x ,  t )  = u i ( x ) ]  
and this case also gives the biggest difference between helical and reflexion-invariant 
diffusivities. Differentiation of (1.1 ) then gives 

(1.5) I 

1 

dvi/dt = (au,/axj) vj, 
d2vi/dt2 = ( ~ U , / ~ X J  (au,/a~,) V ,  + (a2u,/axj ax,) V ,  v,, etc. 

Now assume that the Eulerian field is normally distributed. Multiply (1.5) by vi( t ) ,  
take t = 0, and evaluate the ensemble averages of the resulting equations by the rules 
for a normal distribution. We find 

(1.6) 
co = (ui ui) ,  c1 = ((aui/ax,) ui u,), 

c2 = ((aUi/axj) ( a q a x , )  U, u i )  + ((a2ui/aXi ax,) u5 21, u i ) .  

The odd-order moments vanish, and the even-order moments are evaluated by taking 
all pairings. Those pairings which do not vanish because of homogeneity and in- 
compressibility can be evaluated from the isotropic relations 

(1.7) 

Here vo is the root-mean-square velocity in any direction and the characteristic 
wavenumbers kn and kA are defined by 

I (uj u,) = v; s,n, (ui(auj/axn)> = P v , ~  k, einj, 
(u i  a2ui/axj ax,)) = - vg kf s,,. 

E ( k ) k d k ,  ki = - 3 4  Srn 0 E(k )  k2dk, 

where E ( k )  is the usual turbulence energy spectrum per unit mass. 
From (1.6) and (1.7), 

co = 3v& c1 = 0, c2 = -3v;(k2,-2/32k;). 

Also, (1.7) implies that the helicity density is 

(u . W) = 6/34 k, (1.10) 

and that the largest helicity which is kinematically possible is given by 
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Thus (1.9) shows that the curvature of UL(t)  at t = 0 decreases with increasing helicity . 
In  general, k, 2 k,, with equality when E(k) has the form 

E(k)  = $t$6(k-ko). (1.12) 

In  the latter case, k, = k, = k, and the curvature at t = Ois reduced to half its reflexion- 
invariant value if the helicity is maximal. 

Before proceeding with more analysis, it is appropriate to seek a simple physical 
explanation of the enhancement of diffusion by helicity. At first sight, the effect is 
puzzling because the Eulerian correlation (u i (x )  u i (x’ ) )  is determined by E(k)  alone 
and is independent of helicity. However, strong helicity decreases the probability of 
fluid-element trajectories which bend tightly back on themselves to return close to the 
origin. Such paths which lie nearly in a plane are strongly discriminated against. 
More generally, it is plausible that a path constrained to  follow a helix cannot bend 
back on itself as tightly as one which is not, given a characteristic correlation length 
of the Eulerian field. 

Equation (1.9) describes only the initial behaviour of UL(t ) ,  but it suggests that the 
effects of helicity on diffusivity are strongest when the energy spectrum is highly 
compact, so that k, N k,. It also seems clear that these effects should be strongest 
when the Eulerian velocity field is frozen, as assumed in obtaining (1.9). At the 
opposite extreme the correlation time of the Eulerian field is very short compared with 
an eddy-circulation time. In  this case, the trajectory of a fluid element consists of a 
string of short, statistically independent straight-line segments whose statistics are 
independent of whether or not there is helicity. 

2. Corrsin’s conjecture and reflexion invariance 
The probability distribution of the fluid-element displacement may be written as 

G(x, t )  = (a3@ - Y(t))). (2.1) 

Its transform (2.2) 

is the mean response function of a Fourier mode of a passive scalar field convected 
by the turbulence. If k is very small compared with wavenumbers of the turbulence, 
Taylor’s (1921) theory of diffusion implies 

g(k, t )  = 1 G(x, t )  exp ( - ik .  x )  d32 

g ( k , t )  w exp[ -k2j:~(s)d8], 

so that UL(t )  = { - 3k-%l2 [lng(k, t)]/dt2}k+o. (2.4) 

Corrsin (1959) conjectured an asymptotic relation between G(x, t )  and UL(t) of a 
different kind. He started by noting that 

U y )  = J(U,(O, 0) U i ( X ,  t )  S3(x - y ( t ) ) )  d3x (2.5) 

is an exact restatement of (1.3). Corrsin’s conjecture is that for large t the statistical 
dependence of u ( y ( t ) , t )  on y(t) becomes sufficiently weak that the average in (2.5) 
can be factorized to yield the asymptotic equation 

UL(t) = Oii(x, t )  G(x, t )  d32, (2.6) 



this can also be written as 
UL(t)  = ( U ( k ,  t )  g(k, t )  d3k. 

Equation (2.8) also arises as an analytical consequence of the direct-interaction 
approximation (DIA) for g(k, t )  (Roberts 1961). The DIA integral equation for g(k, t )  is 

and (2.8) follows from the solution together with (2.3) and (2.4). 
It is hard to measure either UL(t )  or g(k ,  t )  at large t ,  so that a direct test of Corrsin’s 

equation as an asymptotic relation is difficult. However, the solution of (2.9), which 
implies (2.8) at all t ,  agrees very well with computer simulations of diffusion at  small, 
intermediate and large times for the exceptionally critical case of a frozen Eulerian 
field with spectrum (1.12) and reflexion-invariant normal statistics (Kraichnan 1 9 7 0 ~ ) .  
This strongly suggests that, provided there is reflexion invariance, Corrsin’s conjecture 
is better than an asymptotic approximation: it is a uniformly valid approximation 
for all t . 

Now consider the effects of helicity. Both the computer simulations (Kraichnan 
1976) and the initial behaviour (1.9) indicate that U L ( t )  falls off more slowly and ~ ( t )  
rises more rapidly when there is strong helicity. The latter behaviour implies, in turn, 
that g ( k , t )  falls off more rapidly. Thus if (2.8) is a good approximation for given 
U ( k ,  t )  in the reflexion-invariant case it cannot be good in the maximally helical case, 
because the t dependences of the right and left sides of the equation change in opposite 
senses. In  the case of a frozen Eulerian field with spectrum (1.12) the discrepancies in 
the curvature at  t = 0 and in the effective decay rate at  vo ko t - 1 are both of the order 
of a factor of two. 

The direct-interaction equation (2.9) may be regarded as a truncation of an infinite 
integro-differential series expansion corresponding to a renormalization of the per- 
turbation expansion for g(k, t )  (Kraichnan 1961, 1970b). The higher terms omitted in 
(2.9) have the form of a functional power series in ascending powers of qj, with in- 
creasing numbers of integrations over intermediate times and wave vectors. Inclusion 
of the higher terms adds corresponding terms to (2.8) resulting in a formally exact 
infinite-series representation of UL( t ) .  Written out explicitly up to terms quadratic 
in qj,  this expansion ist 

UL(t) = / U ( k , t ) g ( k , t ) d 3 k - t  j0 ‘ds s: ds’ s d3k s d3k’ 

x ki k, !&(k, t - s‘ )  U,i(k’, S) g(k, t - S) g(lk + kl, s - s’) g(k’, 8‘) + .. . . (2.10) 

The general isotropic form for U&. is 

qi(k,t) = &P,,(k) U(k , t )+ i s i , i k ,X(k , t ) ,  P,(k) = 6ir-kik,/k2, (2.11) 

t Cf. Kraichnan [1970b, equations (48)-(53)]. Each P( ) factor in these equations should 
be +l‘( ) *  
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where the function X ( k ,  t )  vanishes if there is reflexion invariance. The contribution 
of the second term in (2.10) to [d2UL(t)fdt2It=,is 

- +/d3kId3k‘  kj U,,(k, 0) Umi(k’, 0) km, (2.12) 

where we note that g ( k ,  0) = 1. In  the reflexion-invariant case, we see that the integrand 
of the Ic integration in (2.12) changes sign under k-t - k, so that the integral vanishes 
by symmetry. This is not the case if X ( k ,  0) is not zero, and the resulting contribution 
corresponds to the p2 term in (1.9). The higher terms not explicitly shown in (2.10) all 
involve more than two time integrations and therefore make no contribution to the 
initial curvature of UL(t) whether or not there is reflexion invariance. 

The vanishing of (2.12) in the reflexion-invariant case may be regarded as a bonus. 
In  general, the DIA is exact only up to the second order of perturbation theory. In 
the present case, this means that, if the solution of (2.9) for g(k, t )  is expanded in powers 
o f t ,  it must agree with the exact g(k, t )  up to the term in t2.  But by (2.4) this means 
that UL(t )  is guaranteed to be accurate only up to the trivial c, term in (1.4). In  the 
reflexion-invariant case only, the vanishing of (2.12) means an extra two orders of 
accuracy, so that the DIA result for g(k ,  t )  as k + 0 is accurate up to the t4 term and the 
corresponding U L ( t )  is accurate up to the t2 term. Note that g ( k ,  t )  at all k is independent 
of the existence of helicity, up to order t2. The X term in (2.11) makes no contribution 
to (2.9) because of the antisymmetry of eimj. 

The renormalized expansion (2.10) may also be used to examine the validity of 
(2.8) as t --f 00, which is Corrsin’s actual conjecture. Consider, f ist ,  frozen normal 
Eulerian fields with spectra of the form 

U ( k ) K  k‘f (k/ko), f (0) = 1, (2.13) 

where f falls off rapidly enough at  large k that U ( k )  is integrable over k space and where 
k, is now a characteristic wavenumber of the energy-containing range. Let vo continue 
to be the root-mean-square velocity in any direction so that a typical eddy-circulation 
time is 7, = l/v, k,. If the diffusion does not show anomalies at  long times, then by (2.3) 

g(k, t )  N exp ( - k 2 K ( o o )  t )  (k < ko, t B 7,). (2.14) 

Useof (2.13)and(2.14)in(2.8)yields 

UL(t )  N V ~ ( t / 7 0 ) - ~ r f 3 )  (t % 70) (2.15) 

and it is easy to verify that the dominant contribution to UL(t )  for large t comes from 

The second term in (2.10) gives two principal contributions to Uz(t)  for t % T,, one 
in which both k and k‘ are of order ( ~ , / t ) )  k ,  and another in which one of these wave- 
numbers is of that order and the other is o f  order k,. Both contributions are easily 
estimated if (2.14) remains approximately valid for k N k,. The result of this analysis 
is that both contributions fall off as a higher power of t-1 than (2.15), provided r 2 0. 
It can also be seen that the higher terms in (2. lo), those not shown explicitly, contribute 
successively higher powers of t-l.  Thus, subject to reservations because (2.10) is at  best 
an asymptotic rather than a convergent series, the renormalized perturbation theory 
supports Corrsin’s conjecture that (2.8) is asymptotically correct for large t ,  and this 
appears to be true whether or not there is helicity. The behaviour described holds 

f Saffman (1962) noted long ago that Corrsin’s conjecture implies an algebraic fall off of 

k (TO/t)+kO.t 

UL(t )  at large t .  
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whether X in (2.11) is assumed to be zero or to have the maximum value kinematically 

klX(k)l = 4W). (2.16) possible, 

If the Eulerian field is time dependent and U ( k ,  t )  and X(E, t )  fall off strongly after 
a finite correlation time, then the dominance of the fist term in (2.10) over successive 
terms increases at  large t .  In  the extreme case where this correlation time is < 7, for all 
k, the dominance of the first term extends to all t .  Again, this is true whatever the 
strength of the helicity. 

The intuitive argument in support of Corrsin’s conjecture is that for t 9 7, a typical 
fluid element has executed a random walk of many steps, the probability distribution 
G(x, t )  is wide compared with the correlation length l/k,, and the probability that a 
fluid element has wandered back to within a correlation length of its starting point is 
independent of its initial velocity. If statistical dependence in the Eulerian field falls 
rapidly to zero for separations larger than order l/k,, this argument appears difficult 
to fault, whether or not there is helicity. Also, it is easy to estimate that those fluid 
elements which linger for the entire time t in the neighbourhood of their origin make 
a negligible correction for large t .  

However, this intuitive argument is not obviously valid if the spectrum has, say, 
the form (1.12), so that spatial correlations fall off slowly. In  this case, all the terms in 
(2.10) appear to give contributions of the same order of magnitude at large t ,  so that 
the renormalized perturbation expansion also does not support Corrsin’s conjecture. 

It is of interest to ask what happens to the asymptotic behaviour (2.15) when the 
Eulerian field shows time dependence appropriate to Navier-Stokes dynamics. If the 
Reynolds number v,/vk, is moderate or large, the time dependence of U ( k , t )  for 
k < k, and t % 7, should reflect two principal effects: the eddy viscosity exerted by 
wavenumbers of order k, and the eddy circulation associated with motions of scale 
k-l. The effective eddy viscosity should be - K(OO), implying a time dependence for 
U ( k ,  1 )  like (2.14). With the spectrum (2.13), the characteristic velocity associated 
with scales N k-l is v k  - ~ , ( k / k , ) l ( ~ + ~ ) ,  so that the eddy-circulation time is 

l/vk k N (k0/k)*(r+6)~0,’ 

which is larger than the eddy-viscous decay time (k,/k)27, as k -+ 0 provided that r 2 0. 
The result is that t,he time dependence of U ( k , t )  does not change the asymptotic 
behaviour (2.15). 

If r = 0, (2.13) gives equipartition of energy among the smell wavenumbers and the 
t-% tail on U L ( t )  resembles that due to fluctuations of a quiescent fluid about thermal 
equilibrium (Kraichnan 1975). It is also of interest to note here that, if the turbulence 
exhibits a Kolmogorov inertial range and t is such that a typical fluid element has 
wandered from its origin a distance that lies within the inertial range of scales, then the 
LHDI approximation (Kraichnan 1966) predicts that UL(t )  falls off like t-2, apart from 
a dependence of logarithmic type. 

3. Direct-interaction approximation for the Lagrangian covariance 
One way to construct an analytical approximation which can distinguish the 

differing behaviours of UL(t) in reflexion-invariant and helical turbulence is to form 
a higher-order closure equation for g(k ,  t )  accurate up to the fourth order of perturba- 
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tion theory. This would give correctly the curvature of UL(t) at t = 0. A closure which 
accomplishes this formally involves vertex renormalization of the perturbation series 
(Kraichnan 1961, 1974). This approximation gives excellent results for g(k ,  t )  at all 
t if k b k,, but its qualitative properties and internal consistency have not been 
demonstrated for the smaller k values of interest here. The approximation is analytic- 
ally complicated. 

Instead, we shall examine here a closure for the Lagrangian velocity covariance 
which stays within the framework of the direct-interaction approximation, and 
therefore agrees exactly with perturbation theory up to only second order, but which 
works directly with UL(t )  so that that quantity itself is correct up to second order. 
This is accomplished by introducing the generalized velocity field u(x ,  tlr), defined as 
the velocity measured at  time r in the fluid element whose trajectory passes through 
( x ,  t ) .  The generalized field is related to the Eulerian velocity by 

U ( X , t l t )  = u(x , t )  (3.1) 

v(t) = u(0, O l t ) .  (3.2) 

(3.3) 

and to the previously defined Lagrangian velocity by 

The Eulerian field determines u(x ,  t ( r )  by (3.1) and the equation of motion 

(Kraichnan 196’5). 
The covariance UL(t )  satisfies U L ( t )  = UL( - t )  if the turbulence is stationary and 

homogeneous, since it is then immaterial whether an ensemble of trajectories is taken 
with the same starting point or the same finishing point. We have 

[ a p t  + u(x ,  t )  . V] U i ( X ,  tlr) = 0 

UL(t  - r )  = (Ui(X, tlr) U i ( X ,  t ) ) .  
If U$(k, t )  is defined by 

(3.4) 

U&(k, t - r )  = (27r)-3J(ui(~,tlr)uj(~’,t))exp [ - i k . ( x - x ’ ) ] d 3 x ,  (3.5) 

then U L ( t )  = 1 U&(k,  t )  d3k. (3.6) 

By (3.3), the three components of ui(x,  tlr) are advected independently, with the 
result that ui(x,  t J r )  is in general not solenoidal for t $. r .  However U$(k, t )  is solenoidal 
in j and this, together with rotational invariance, requires the form 

U$(k, t )  = BP,,(k) UL(k,  t )  + kimj kmXL(k,  t ) ,  (3.7) 

which is solenoidal in both i and j and similar in structure to (2.11). Thus 
Uk(k, t )  = UL(k,  t ) .  If t = 0, U& reduces to qj, so that 

(3.8) 

The DIA equations for the covariance of the generalized velocity can be developed 
from (3.3) in analogy with the analysis for a passive scalar, which obeys the same 
equation. The detailed algorithms for this are given in Kraichnan (1965), where they 
are later used to construct a modification of the DIA. Instead, we use here the straight 
DIA without modifications. The DIA equations give the evolution of the full covariance 
(ui(x,  t lr)  uj(x‘, t ’ l r ’ ) ) ,  which has four time arguments. In  order to compute the 
quantities of present interest, i.e. (ui(x, t I T )  uj(x’,  t ) ) ,  it is necessary to deal with coupled 

UL(k,  0) = U ( k ,  0 ) ,  XL(k ,  0) = X ( k ,  0). 
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equations involving the more general covariance (ui(x, t lr)  uj(x', t ' ) ) ,  which has three 
time arguments of which only two are independent, because of stationarity. If the 
Eulerian field is time independent, 

ui(x, tlr) = ui(x, t + At(r+At) ,  (3.9) 

which results in a very great simplification, yielding coupled equations for UL(k, t )  
and X L ( k ,  t )  without involving the more general covariance. 

The algorithms of Kraichnan (1965), together with the isotropic forms (2.11) and 
(3.7) and the use of (3.9), yield the pair of coupled equations 

auL(k, t ) /at  = -n SludS~~A(pn/k)sin2e9(p,t-S) [k2U(q) W k , 4  

aXL(k, t)/at = - n / ; d s j y A ( P q / k )  f3in2eg(P, t - 4  [k2U(!Z)XL(k,4 

+$kqcos8 U ( k )  UL(q,s)-2k2qZX(k)XL(q,s)]dpdq, (3.10) 

- iq2U(k)  XL(q, S )  + Bkq COB 8 X ( k )  UL(q, s)] dp dq. (3.11) 

In  these equations denotes integration over all p and q which can form a triangle 

with k ,  8 is the interior angle between k and q in this triangle, and g(p, t - S) is the 
function defined by (2 .2 ) .  The equation for g(k, t )  is that obtained by substituting 
(2.11) into the previous DIA equation (2.9): 

ss, 
n r  n n 

The function g ( k , t )  arises in (3.10) and (3.11) as the mean response function for 
infinitesimal perturbations of the generalized velocity, whose components, as we have 
noted, obey the same equation as a passively advected scalar field. Equations (3.10)- 
(3.12) can be integrated forwards in time from the initial values (3.8) and g(k, 0) = 1. 
Note that the right-hand side of (3.10) consists of terms which contain either two U 
factors or two X factors, while all the terms on the right-hand side of (3.11) have one 
U and one X factor. 

The curvatures at t = 0 of U L ( k ,  t ) ,  XL(k ,  t )  and g(k, t )  obtained from (3.10)-(3.12) 
are all exactly correct. Since (3.10) and (3.12) are not identical equations, the solutions 
do not satisfy (2.8) when the Eulerian field is frozen and therefore do not satisfy it in 
general. This is true even if the turbulence is reflexion-invariant, so that X vanishes. 
Then (3.10) and (3.12) differ by the cos8 term in (3.10). That term vanishes by sym- 
metry on performing the p integration at t = 0 because g(p, 0 )  is independent of p .  

Equations (3.10) and (3.11) can be simplified if the helicity spectrum is a constant 
fraction of the maximal value at  all k: 

X ( k )  = Pk-'U(k) ( [PI  < 4). (3.13) 

If &(k, t )  and R(k,  t )  are defined by 

UL(k ,  t )  = &(k, t )  U(k ) ,  XL(k ,  t )  = R(k,  t ) X ( k ) ,  (3.14) 
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(3.10) and (3.11) yield 

x [k2Q(k, S) - 2P2kqR(q, 8) + i k q  cos 0 Q(q, 811 d p  dq, (3.15) 

aR(k, t ) /at  = -n/:ds//A(pq/k)sin20g(p,t - 8 )  U ( q )  

x [k2R(k, 8) - @@(q, 8) + @q cos 0 Q(q, ~ 1 1  d p  dq. (3.16) 

If [PI = 4, the R and Q equations become the same, giving R ( k ,  t )  = &(k, t )  and 

a&@, t ) /a t  = - n [ d s  /IA (pqlk) sin2 0 g(p ,  t - 4 v(P-1 
0 

x [k2Q(k, 8) - ikq(  1 - COB 0) Q(q, 9)l d p  dq. (3.17) 

The identity of R ( k ,  t )  and Q(k,  t )  in this case is a property of the exact dynamics also. 
The velocity field is made up exclusively of waves with helicity of one sign and UL(k,  t )  
and X L ( k ,  t )  are not independent. 

The function X L ( x ,  t )  can be used to compute the Lagrangian covariance of vorticity 
with velocity: 

(3.18) W t )  = ( N Y ( t ) ,  t )  . U(Y(O), 0)) = ( 4 x 2  t )  . u(x, tl 0)). 
The definition of vorticity 

and (2.11) yield 
W i ( X ,  t )  = iEimi aui(x, t)/8xm 

H L ( t )  = 2 I k2XL(k,  t )  d3k. 

(3.19) 

(3.20) 

Thus the DIA equations determine HL(t)  as well as UL(t ) .  However, they do not 
determine the Lagrangian correlation of vorticity with itself. Equation (3.19) does not 
generalize to give w , ( x , t ( r )  in terms of ui(x , t l r )  because the co-ordinates x label 
trajectories at  time t and are not a Cartesian system at times r + t .  In  order to compute 
general covariances involving vorticity by the DIA it is necessary to augment (3.2) 
by a parallel equation for the propagation of oi(x, t lr) .  

4. Numerical results 
Computer simulations of UL(t), ~ ( t )  and g(k, t )  were obtained by averaging over an 

ensemble of numerically integrated trajectories (1 .1) .  The spectrum (1.12) was simu- 
lated by a set of 20 wave vectors' randomly distributed on the sphere I kl = k,. The 
frozenEulerianfieldwas then synthesized along the trajectory. A fresh realizationof the 
Eulerian field was taken for each trajectory. The method of constructing the Eulerian 
field and of integrating the trajectories and then constructing the desired averages has 
been described previously (Kraichnan 1970a, 1976). The present simulations included 
20000 realizations integrated to t = 16/v0 k, for each of the two cases /3 = 0 and 
/3 = 0-5 (reflexion invariance and maximal helicity, respectively). The integration 
time step was At = 0.25/v0 k,. The results were compared with numerical integrations 
oftheDIAequations(3.12), (3.15)and(3.16). 

We shall discuss first the simulation results, shown in figures 1-3. The curves for 
UL(t )  in figure 1 show the difference in initial curvature predicted by (1.9). However, 
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FIUURE 1. Lagrangian vnlocity covariance for frozen Eulerian field: (a) simulation for 
/l = 0; (a) DIA for /l = 0; (c) simulation for B = &; (d) DIA for /3 = &. 

3 

2 

1 

0 2 4 6 8 10 12 14 16 

uo ko 

FIQURE 2. Diffusivity for frozen Eulerian field. Solid curves labelled as in figure 1. 
The dashed curve is obtained from the DIA g(k, t )  and (1.3) and (2.8). 
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FIGURE 3. The function g(k,, t )  for frozen Eulerian field: (a) simulation for 

p = 0; (b)  simulation for p = +; ---, DIA. 

the difference in ~(co) between the helical and non-helical case is greater than would 
be expected from the initial behaviour. Equation (1.9) suggests that the characteristic 
time scale of UL(t)  should increase by a factor 4 2  between p = 0 and j3 = 4. But 
figure 2 shows that K(t), the time integral of UL(t) ,  is higher for the helical case by a 
factor of 2.7 at t = 16/v, k, and that the ratio is still rising with t .  It is not obvious from 
the figure that K(t) is actually approaching a finite limit as t+co in the helical case, 
but the numerical values for UL(t) at the larger t values do fall off faster than t-l,  
thereby suggesting a finite limit. 

Another difference in the behaviour of UL(t) in the two cases is that, for p = 0, 
UL(t )  has a negative oscillation, reflecting the oscillatory spatial correlation function 
associated with (1.12). There is no trace of this behaviour for p = 4. 

The difference between the functions K(t) for the helical and non-helical cases 
implies a corresponding difference between the functions g(k, t )  for k 4 k,, as discussed 
in $2. Figure 3 shows the interesting fact that the degree of helicity has very little 
effect on g(k, t )  for k = k,. For k % k,, the fall-off of g(k, t) is very close to what it would 
be in a spatially uniform velocity field, normally distributed, and therefore must 
asymptotically be completely independent of the presence of helicity as k -+ 00. 

Standard deviations of the mean were computed for all the simulation results. The 
associated probable errors are too small to show on the plots except in the case of K(t), 
where they are indicated by bars. 

The DIA values of the various functions are also shown on figures 1-3. The plots 
corroborate that the initial curvature of UL(t )  is given correctly by the DIA equations. 
For p = 0, the agreement of the DIA function UL(t )  with the simulation result is 
quite satisfactory for all t .  In  particular it reproduces the negative oscillation well. 
For B = 4, the agreement is satisfactory for t < 2/v, k,, but the DIA does not reproduce 
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FIGURE 4. Lagrangian vorticity-velocity covariance for frozen 
Eulerian field according to DIA: (a) p = 0;  ( b )  B = 8. 
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well the slowly decaying tail for large t ,  and there is substantial error, whose relative 
size grows with t ,  for t > 3/59, k,. The negative oscillation is much smaller than in the 
case p =  0 but is still there, while it is absent completely in the simulation curve. The 
integrated curves of figure 2 show the cumulative effect of the deviation of the DIA 
resuMs from the simulation values. The faithfulness at all t for /3 = 0 and the deviation 
at large t for /3 = 4 appear clearly. Also plotted in figure 2 is ~ ( t )  as computed from the 
DIA g(k, t )  used in (2.8). This shows an almost indecent agreement with the simulation 
values for /3 = 0. Figure 3 shows that the DIA g(k,, t )  agrees well with the simulation 
results for g(k,, t )  at both /3 = 0 and /3 = +. 

Figure 4 shows the Lagrangian vorticity-velocity covariance HL( t )  as computed 
from the DIA equations for both /3 = 0 and /3 = +. The two curves are close together. 
For/3 = 4, HL(t) and UL( t )  must be the same both in the DIA and in the exact dynamics, 
as we have discussed previously. For /3 = 0, however, the DIA results imply a sub- 
stantially slower decay of HL(t) than of UL(t) .  This interesting result means that if 
weak helicity is present the correlation of vorticity with initial velocity is more per- 
sistent along particle trajectories than the correlation of the velocity itself. We have 
not attempted to corroborate this prediction by simulation because of the difficulty 
in getting good helicity statistics when the helicity is weak. The initial behaviour of 
HL( t )  is of course guaranteed to be correct in the DIA equations. 

The general conclusion from the comparisons of the DIA results with the simulations 
is that for the frozen velocity field with the spectrum chosen the DIA values for g(k, t )  
are quite satisfactory for k N k, both with and without helicity. For /3 = 0, the DIA 
value for g ( k ,  t )  is good also if k 4 k,  but this is not so for /3 = 4. In the latter case, good 
quantitative results for diffusion are obtained for moderate times if the DIA g(k, t )  is 
not used directly but instead is inserted in (3.15) and (3.16) to obtain UL(t )  and the 
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latter quantity is then used to obtain an improved approximation for g(k, t )  at small 
k by means of (2.3). After this procedure the DIA value of ~ ( m )  for p = 4 is too small 
by a factor of over 1-5, but does exceed K(CO) for /3 = 0 by substantially more than the 
factor 4 2  suggested by (1.9). 

The frozen velocity field with spectrum (1.12), which we have used for the numerical 
integrations, probably gives the strongest differences between reflexion-invariant and 
helical diffusion and also probably maximizes the errors of the DIA. This is due to 
persistent correlations along typical trajectories both because the Eulerian field does 
not change in time and because the spatial correlation of the Eulerian field has a 
long-range tail which falls off like sin (kx ) / (kx ) .  If the Eulerian field instead has a finite 
correlation time r*, beyond which statistical correlations rapidly become negligible, 
then the long-range spatial tail no longer has an effect, because few particles move far 
enough to enter the tail region before the velocity field changes to a statistically 
independent form. 

In  the limit 7* Q 70 = 1 /v,, ko, the difference between helical and non-helical diffusion 
disappears, the diffusivity is ~ ( m )  = r*vi and the error of the DIA goes to zero 
(Kraichnan 1976). A more interesting and realistic choice is r* - ro. The shape of 
K ( t )  and the value of ~ ( m )  will then depend on the particular form of time correlation, 
space correlation (spectrum) and statistics taken for the velocity field. However, we 
can estimate both the magnitude of the changes in ~ ( t )  and U L ( t )  for finite 7* and the 
effect on the accuracy of the DIA by using the present frozen-field results in a double- 
averaging procedure. 

In  its simplest form, the double-averaging procedure involves taking a frozen field 
over time intervals of duration 27*, making the velocity field statistically independent, 
but with the same spectrum and p, on distinct time intervals, and staggering the 
transition times between intervals randomly from one subensemble of realizations to 
another. If either the DIA or the exact behaviour is computed for each subensemble 
and then averaged, the effect on the diffusivity is easily seen to be (Kraichnan 1976) 

Here ~ * ( t )  is the diffusivity for the double-averaged ensemble and ~ ( t )  is that for the 
frozen field. The Eulerian time correlation (u(x, t )  . u(x, t')) falls linearly to zero at 
t - t '  = 27, and thus has the correlation time r*. The corresponding change in the 
Lagrangian correlation is 

Table 1 shows the values of K*(CQ) for several values of r* for the exact dynamics 
and the DPA, with bothP = 0 a n d l  = 8. For the exact dynamics, the ratio of diffusivity 
for ,5 = 8 to diffusivity for /3 = 0 rises from 1.134 at r* = ro to 2.179 at r* = 87,,, while 
in the DIA this ratio goes from 1.145 to 1.741. The DIA gives the ratio with good 
accuracy for 7, < 2r0 and gives the diffusivities themselves with an error of H 6 yo at 
r* = 2r0. Its accuracy deteriorates for larger 7*. 
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Exact, /? = 0 DIA, /? = 0 Exact, B = 4 DIA, = 7* 1 7 0  

1 0.780 0-758 0885 0.869 
2 1.008 0.943 1.415 1.326 
4 1-066 0.982 1,920 1.623 
8 1.072 0.990 2.335 1-723 

TABLE 1. Values of K*(CO)  for exact dynamics and DIA. 

The frozen-field numerical results also yield values of U L ( t )  and ~ ( t )  for a generalized, 
more realistic, piecewise-continuous model in which the velocity field in each in- 
dependent interval falls smoothly to zero a t  the ends of the interval, thereby giving 
a smooth Eulerian time correlation. This model can be handled by introducing an 
appropriate transformed time variable whose derivative is proportional to the form 
factor of the velocity field. It is unlikely that this refinement would appreciably affect 
either the dependence of the exact results on 7* or the accuracy of the DIA results. 
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